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The hydrodynamics of enhanced longitudinal heat transfer through a sinusoidally 
oscillating viscous fluid in an array of parallel-plate channels with conducting 
sidewalls is examined analytically. Results show that for fixed frequency the 
corresponding effective thermal diffusivity reaches a maximum when the product of 
the Prandtl number and the square of the Womersley number is approximately equal 
to a2 Pr =.IT. Under such tuned conditions the axial heat transfer achievable is 
considerable and can exceed that possible with heat pipes by several orders of 
magnitude. The heat flux between different temperature reservoirs connecting the 
parallel-plate-channel configuration is shown, under tuned conditions, to be propor- 
tional to the first power of both the axial temperature gradient and the flow oscillation 
frequency and to the square of the tidal displacements. A large value for the fluid 
density and specific heat is also found to be beneficial when large heat-transfer rates 
are desired. The process discussed involves no net convection and hence achieves large 
heat-transfer rates (in excess of lo8 W/cm8) without a corresponding net convective 
mass transfer. A discussion of the physical origin for this new heat-transfer process 
is given and suggestions for applications are presented. 

1. Introduction 
It is known that the axial dispersion of contaminants within laminar flows through 

capillary tubes under both steady (Taylor 1953; Aris 1956) and oscillatory flow 
conditions (Chatwin 1975; Jaeger 1983 ; Watson 1983; Joshi 1983) is considerably 
larger than in the absence of flow. This enhanced t,ransport is produced by the 
interaction of the radially dependent axial-velocity profile and the corresponding 
radially varying concentration profile and can lead to effective axial dispersion 
coefficients orders of magnitude larger than the corresponding value of the molecular- 
diffusion coefficient. The present author (Kurzweg 1983) has suggested that a similar 
dispersion process should occur in the heat-transfer area due to the similarity between 
the diffusion and heat-conduction equations. Indeed, except for some more com- 
plicated boundary conditions arising in the thermal problem, the results of the 
contaminant dispersion problem should be directly applicable. We have most 
recently confirmed the existence of such an enhanced heat-transfer process in 
high-frequency oscillatory flow within a capillary bundle connecting two reservoirs 
maintained a t  different temperatures (Kurzweg & Zhao 1984). Using water as the 
working fluid, effective thermal diffusivities some four orders of magnitude larger 
than the molecular diffusivity value for water, were measured. The corresponding 
heat-transfer rates are comparable to those achievable with heat pipes and thus 
suggest that the phenomenon may find important applications in areas requiring the 
rapid removal of heat without an accompanying net convective mass transfer. 
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FIGURE 1 .  Geometry of the parallel-channel flow configuration under investigation. 

Our purpose here is to develop a comprehensive theory for this new heat-transfer 
process. We will confine our attention to strictly oscillatory flows in parallel-plate 
channels (see figure 1) but, in contrast to our earlier studies, will place no restrictions 
on the oscillation frequency or the wall conductivity. Of particular interest to us will 
be a determination of the enhanced axial thermal diffusivity as a function of the 
Womersley number, the fluid Prandtl number, and the ratio of fluid-to-wall con- 
ductivity. As will be shown, the heat-transfer process, a t  fixed frequency, is most 
efficient near u2 Pr = n, where a is the Womersley number and Pr the Prandtl 
number. Asymptotic values for the enhanced thermal diffusivity will also be 
presented. 

2. Formulation of the problem 
We consider a pressure-gradient-induced periodic viscous flow within a long parallel 

plate channel array as indicated schematically in figure 1 .  The ends of the channels 
terminate in large reservoirs which are maintained a t  constant but different tem- 
peratures so that a time-averaged constant axial temperature gradient y = aT/ax is 
maintained both within the thermally conducting fluid and the thermally conducting 
walls. This problem is analogous to the contaminant-diffusion problem under 
oscillatory conditions (Chatwin 1975) except that here it will be heat which is 
transported in a direction opposite to the temperature gradient and, unlike in the 
contaminant-diffusion case, the time-dependent radial temperature variation will 
propagate a finite distance into the conducting bounding walls of the channels. The 
widths of the fluid layers and the solid walls in this ‘thermal pump ’ configuration 
are taken as 2a and 2b, respectively. 

Neglecting end effects, present at points where the channels enter the fluid 
reservoirs, and assuming laminar-flow conditions, the axial-velocity profile existing 
in the central channel is represented by the real part of 

in [ a2 c o s h d i a  
cosh z/i uq] eiWt U(y, t )  = Uoj (q )  eiwt = U,, - 1 - 
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where 7 = y/a is the non-dimensional coordinate normal to the flow direction, U, a 
representative axial velocity, t the time, a = a 1 / ( w / v )  the Womersley number, v the 
fluid kinematic viscosity, p the fluid density, and A = I ap/ax I a2/pU,  u the non- 
dimensional magnitude of the imposed sinusoidal pressure gradient varying in time 
with an angular velocity w .  The velocity profiles in the other parallel channels are 
identical in shape and are represented analytically by simply replacing 7 by 
7 f 2 4  1 + 8). Here TZ is an integer and E = b/a. At large a the velocity profile (1) has 
an essentially slug-flow character away from the walls and boundary layers of 
thickness 6 = 1 /2  a/a  existing at the channel walls. For small a the flow has the 
familiar Poiseuille profile modified by the exp iwt term. 

When dealing with such time-dependent flows it is convenient to introduce the 
concept of the tidal displacement Ax. This quantity can be defined as the cross-stream- 
averaged maximum axial distance which the fluid elements travel during one half 
period of the oscillation. Mathematically the tidal displacement equals 

which upon integration, using the form forf(7) defined in ( l ) ,  becomes 

A x = L  2U A I 1-  tan;h:i a 1 
wa2 (3) 

Note that for very high frequencies, and hence large a, the term within the absolute- 
value sign in (3) goes to unity so that Ax becomes 2 I ap/ax l/pw2 in this limit. It should 
be pointed out that the value of Ax is always taken as less than the distance between 
fluid reservoirs in order to insure that no direct convective mass transfer can occur. 

The temperature T(z,y7t) within this channel flow can be determined from a 
solution of 

in the range 0 < 7 < 1 and 
Tt = Ks(T,,+Tyy), (5) 

over the range 1 < 7 < 8 = b/a. Here Kf and K, are the thermal diffusivities of the 
fluid and the solid conductor, respectively. The viscous-heating term has been 
neglected in (4) since it is very small for most experimental conditions except those 
where one deals with high-Prandtl-number fluids such as oils. Typical temperature 
differences produced by viscous heating are A T  = Pr (w Ax)~/c,  where c is the fluid 
specific heat. Note that the symmetry of the problem dictates that there can be no 
heat flow in the y (or 7) direction across planes located in the middle of either the 
fluid channels or the middle of the solid walls. The boundary conditions at the fluid-wall 
interface at 7 = 1 are that both the temperature variation and the heat flux be 
continuous there. To solve (4) and ( 5 )  exactly for the velocity profile under 
consideration is a formidable task. Fortunately, in the present problem such a general 
solution will not be necessary when it is realized that in the geometry considered the 
time-averaged axial temperature gradient has the constant value y. This suggests that 
one try a locally valid solution of the form 

T(x,r , t)  = y[x+ag(7)eiwtl, (6) 

as first proposed by Chatwin (1975). Note that this form for T(x, 7, t) has a physically 
realistic locally time-averaged constant axial temperature gradient and also exhibits 
a time-dependent cross-stream variation in temperature. Kurzweg (1 983) has shown 
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that it is not always necessary to use (6) in deriving an effective thermal dispersion 
coefficient. Substituting this expression into (4) and (5 )  yields 

and 

g; - ia2 Pr gP = Pe f, 

g," - ia2u Pr gs = 0, 

where the prime denotes differentiation with respect to 7, Pr = v/Kf is the fluid 
Prandtl number, P e  = U , U / K ~  is the PBclet number, u = q / K ,  is the ratio of fluid to 
wall thermal diffusivity with the functions gf and gs representing the q-dependent 
temperature functions as defined by (6) within the fluid and within the channel wall, 
respectively. The boundary conditions for these functions are g;(O) = 0 and gi(e) = 0 
together with the two interfacial conditions gr( l )  = g,(l) and ,q$(l) = gi(l), where 
p = k f / k s  is the ratio of fluid to wall thermal conductivity. Closed-form solutions for 
g satisfying these conditions are readily found to be 

h Pe i P e  
gP(7) = C, cosh d(i Pr)ay+ a4 PT(Pr- 1)  + a2(Pr- I )  f(7) (9) 

and gs(7)  = C, cosh d ( i u  Pr) a(€-7). (10) 

Here the constants C, and C,  have the values 

- A  P e  
~ ~ ( P r - 1 )  Pr coshd( iPr )a  

c, = 

t a n h l / i a + l / r  tanhl/(iuPr)a(e-l)  
p tanh d(i Pr) a+ du tanh d ( i u  Pr)a(s- 1) 

and 

h P e  
a4Pr(Pr-1)  

C, cosh l/ (i Pr) a + 
c, = 

cosh d(iuPr) a(€-  1 )  

The apparent singularity in these solutions as the Prandtl number approaches unity 
can easily be resolved by an appropriate limiting procedure. 

3. Enhanced thermal diffusivity 
Having determined the velocity and approximate temperature distribution within 

the channels, we are now in the position to calculate the enhanced heat transfer which 
can be expected to occur from the hot to the cold end of the thermal pump under 
consideration. Neglecting the small contribution owing to axial thermal conduction 
in the heat-transfer process, it is clear that an effective averaged thermal diffusivity 
K, can be defined by the equality 

2n/w 

- K e Y  = ;Jo dt Jol CT(~,7,t)l,[Uof(t)ei"tlRd7, (13) 

where the subscript R refers to the real part of the terms shown. The left-hand side 
of this expression represents the effective axial thermal flux per unit cross-sectional 
area and the right side the time-averaged convective thermal flux produced by the 
interaction of the cross-stream-varying velocity and temperature profiles. In general 
the real parts of the quantities in this integrand do not average out to zero over time 
so that there will be a net heat flow although, clearly, the time average of the velocity 
will be zero so that there can be no net accompanying mass transport. This is an 



Heat conduction in oscillating viscous jlows 295 

important property ofthe heat-transfer processstudied and suggests many applications 
including the cooling of radioactive fluids. 

Substituting the explicit form for gf and f into (13) and performing the time 
integration yields 

(14) 

as the ratio of the enhanced thermal diffusivity to the molecular thermal diffusivity. 
Here the bars designate the complex conjugate of the functions shown. This form 
is identical with the result obtained by Watson (1983) provided the function gf is used 
to designate the cross-stream variation of contaminant in the related concentration 
dispersion problem and if the non-penetration condition gi( 1) = 0 is imposed. 

An evaluation of the integral given in (14) is most efficiently accomplished via an 
integration-by-parts approach after introduction of the functions 

and 

which can be shown to satisfy the identity 

which in turn follows from (7) and (1). Substituting (17) into (14) and integrating by 
parts yields 

{G( 1) P (  1) - G( 1 ) F' ( 1 ) + P( 1 ) @( 1 ) - F( 1 ) G (  1 )}. (18) 
P e  Ke - 

K~ 4ia2( 1 + Pr) 
- _  

It is now a relatively simple matter, using (l), (9), (15) and (16) and their derivatives, 
together with the definition of the tidal displacement Ax given by (3), to obtain the 
final expression for the effective (or enhanced) thermal diffusivity of 

, (19) 
Pr (1 - H) A+ (1 - g) h + ( A-Tg) + (h -jH) 

K, = o A x 2  

l / i  a 
16a2(~r2- 1) 11 - 

where h = l / i  a tanh l/i  a ,  

j = d ( i  Pr) a tanh l/(i  Pr)  a, 

tanhd(iuPr)a(s-1)  
tanhd( iaPr)a(e- l )  

and H(Pr,  p, u, a ,  8 )  = 

4. Evaluation of equation (19) 
In  evaluating (19) it is convenient to find the non-dimensional ratio K,/wAx~ as 

a function of a for fixed values of Pr, p, u, and 6. Since both terms contain the angular 
frequency o it is clear that the resultant plots must be interpret,ed as corresponding 
to a constant-frequency flow. We begin such an evaluation by examining the value 
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of K ,  at very high frequencies where a and a2 Pr are large quantities. In  this limit 
h = d ( i a )  a n d j  = d(i Pr)a, so that 

1 e- K 

@Ax2 -+ 8 d 2 a  Pr(Pr2-1)(p+du) 
Pr (Pr+ 1 )  ( Y +  d4- d P r  (1 + d P r )  ( P  d P r +  du)]. (23) 

This indicates that K,/wAx2 is proportional to the inverse first power of the 
Womersley number. Furthermore, the right-hand side of this expression increases 
with decreasing Prandtl number for small p and (T. There is no dependence on wall 
thickness (2us) in this high-frequency limit. The reason for this is that the wall 
penetration distance is of order 1 / ( 2 ~ J w )  and hence much smaller than the wall 
thickness. The result (23) is in agreement within a factor o f t  with results from a 
recently related study (Kurzweg & Zhao 1984) where attention was confined to 
enhanced heat conduction in tubes for high-frequency pulsating flows. The factor of 
f arises from the different form of (13) when K, is expressed in Cartesian or cylindrical 
coordinates. Since in this limit K ,  is proportional to a, it is clear that at very high 
frequencies the enhanced thermal diffusivity goes as the square root of frequency and 
hence will be a monotonic increasing function of w .  Such an asymptotic behaviour 
has also been found by Watson (1983) in his related study of contaminant dispersion. 

The other limit for which (19) lends itself to a rapid evaluation corresponds to 
low-oscillation frequency where a, a2 Pr, and ( e -  1)  a d(u Pr) assume small values. 
To obtain a non-indeterminate answer in this limit it  is necessary to use the four-term 
approximation 

(24) 

Some manipulations then lead to the result 

d i a  t a n h d i a  = ia2[1 -fia2-&a4+&iaa]. 

In this expression K,/w Ax2 is proportional to a2. That is, at  small frequencies, the 
thermal diffusivity K ,  is directly proportional to the square of the oscillation 
frequency. It is also noted that the right-hand side of (25) increases with increasing 
p, u and 8. Both (23) and (25), as well as (19), show that K, is proportional to the 
square of the tidal displacement. A final observation concerning the above limiting 
forms for K,/w Ax2 is that they imply the existence of a maximum in K,/wAx2 a t  a 
finite value of the Womersley number a, since for small a this ratio is proportional 
to a2 while at high a it is inversely proportional to a. The observation implies that 
we are dealing with a tuning process where for fixed frequency w there is an optimum 
channel width 2a which will maximize K,/w Ax2 and hence allow a maximum heat to 
be transported axially. 

To determine the exact shape of such ‘tuning curves’ for fixed Pr, p,  u and E i t  
is necessary to go back directly to (19) and evaluate this expression as a function 
of a. We have done this for the special case where the fluid and channel walls have 
identical thermal properties ( p  = u = 1)  and the fluid and wall thickness are equal 
(6 = 2). Such a calculation, using a hand calculator, yields the results shown in figure 2 
for the three fluid Prandtl numbers of 0.01, 10, and 1OOO. These values of Pr can 
be considered as representative values for liquid metals, water and viscous oils, 
respectively. Note that each of the three curves show the anticipated maximum in 
Ke/w Ax2 at finite a and that these maxima lie close to the value a2 Pr = 7c. Physically 
these peaks correspond to the point where the thermal diffusion time of heat from 
the axis (7 = 0) to the channel wall (7 = 1 )  of u 2 / K f  just equals one half period n / w  
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FIQURE 2. Ratio K , / o  Axz aa a function of Womersley number a for three different Prandtl numbers. 
The fluid width is equal to the wall thickness (6 = 2) and the thermal conductivity and diffusivity 
of the fluid and wall are equal ( y  = u = 1). 

of the flow oscillation. That is, there is sufficient time for heat to flow from the fluid 
core to the walls or vice versa before the temperature reverses itself within the core. 
At  the same time, the time-dependent temperature gradient in the 7 direction will 
remain large so as to allow a large heat flow in that direction. Another interesting 
character of these tuning curves is that their maximum value changes only slightly 
with change in Prandtl number and that, near these maxima, K, is directly 
proportional to Ax2w and nearly independent of a and Y. For the values of p, cr and 
e used here the ratio of K,/Ax~w at its maximum is approximately 0.03. A final 
interesting feature of (IQ), as pointed out to me by my colleague, M. Jaeger, is that 
it also predicts an enhanced thermal diffusivity if the fluid is replaced by solid 
conducting plates which are oscillated sinusoidally. This limit is found by letting a 
approach infinity (i.e. zero-thickness boundary layers) but keeping ae Pr finite. 

5. Heat conduction between fluid reservoirs 
Having determined the general characteristics of the effective thermal diffusivity 

as a function of Womersley number, we are now in a position to calculate the expected 
heat transfer between the fluid reservoirs located at the ends of the parallel-channel 
array. Since we are neglecting the small contribution to the heat-transfer process 
produced by direct thermal conduction in the x-direction in either the fluid or solid 
walls, the net heat flux per area for unit-depth channels from the hot to the cold 
reservoir will be 

(26) Q=T- Ke’C’ (cal s-1 cm-z), 

where p and c are the fluid density and specific heat, respectively. The value of K, 
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in this expression is that given by (19). Note that for optimum tuning this result 
implies that 

Jpcyw Ax2 

where the constant has values depending on p, CT and E and J = 4.18 J/cal is the 
mechanical equivalent of heat. Interesting features of this result are that the heat 
transfer is largest for fluids with large pc, that it  is directly proportional to the 
temperature gradient y ,  and that it goes as the first power of the oscillation frequency 
w and as the square of the tidal displacement Ax. The values for this enhanced heat 
flow can be quite large. For example, taking pressurized water with pc = 1 (cgs units) 
for a temperature gradient of y = 10 "C/cm at an oscillation frequency of 300 rad/s 
and a tidal displacement of Ax = 100 cm in a parallel channel array with p = cr = 1 
and E = 2, for which the above constant is approximately 0.03, predicts an axial heat 
transport of 1.8 x los W/cm2. This value is some two orders of magnitude larger than 
the best values obtainable with liquid-metal heat pipes (Dunn & Reay 1978). Since 
it is necessary to have large values of ypc in order to obtain large heat-flow rates, 
it may be of advantage in practical heat-transfer devices, based on the present process, 
to use liquid metals as the heat-transfer fluid as these allow a much larger value of 
y although they have smaller values of pc than water by a factor of about two. The 
use of gas as a working fluid would lead to much lower heat-transfer rates a t  the same 
w Ax2 because pc is then small. 

(27) q = const x (W/cm2), 
E 

6. Physical interpretation of the results 
The results given by (19) and (26) can be understood in a qualitative sense from 

pure physical considerations. What occurs in this enhanced thermal conduction 
process is that large oscillating temperature gradients in the direction normal to the 
channel walls are produced when the fluid oscillates and an axial temperature 
gradient is present in the system. During the forward part of the oscillation, hotter 
fluid within the core causes a heat flow to the colder portions of the fluid within the 
boundary layers and to the colder solid walls bounding the fluid. The rate of heat 
flow will be increased the narrower the width of the boundary layer becomes and hence 
the larger the flow frequency becomes. During the reverse phase of the oscillation, 
hotter fluid from the boundary layers and the walls will diffuse into the fluid core, 
which is now colder. The overall effect of this procedure is to pump heat from the 
hotter to the colder portions of the fluid without an accompanying net convective 
mass transport. There will be some axial diffusion mass transfer but this will be small 
for high-Schmidt-number fluids such as water or liquid metals. The analytical 
prediction that the heat transfer is proportional to the square of the tidal displace- 
ment follows from the fact that the radial heat flow is proportional to the product 
of the representative radial temperature gradient yAx/6 and the surface area per 
unit depth of 2Ax available for cross-stream heat transport. Note that this process is 
strictly laminar and will retain its important characteristic of producing heat transfer 
without an accompanying convective mass transfer only as long as laminar con- 
ditions are maintained. Intermittent turbulent conditions, which may occur in these 
flows at higher values of wAx2/v (Merkli & Thomann 1975), would destroy this 
property. Fortunately, most heat-transfer devices, based on the present concept and 
running a t  the optimum of the tuning curves near a2 Pr = x ,  will require very 
narrow channels in which viscous effects can be expected to be sufficiently large to 
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prevent the appearance of turbulence. The reason that the present heat-transfer 
process is less efficient at very low frequencies is that the effective radial temperature 
gradient for a given Ax becomes smaller owing to the widening of the viscous 
boundary layer to essentially the half width of the channel (i.e. 6 = a) .  

7. Concluding remarks 
We have examined the hydrodynamics of the heat-transfer process occurring in 

oscillating channel flow when the ends of the channels are connected to reservoirs 
maintained at different temperatures. The enhanced axial thermal diffusivity has 
been determined and the corresponding axial heat flow rate found. The heat-transfer 
rates achievable are shown to be very large, exceeding those possible with heat-pipe 
technology. The transfer process is especially suited for those problems where it is 
desirable to transport large quantities of heat without an accompanying convective 
mass transfer. The removal of heat from radioactive fluids or from hazardous 
chemical solutions would appear to be ideally suited for a heat-transfer device based 
on the heat-transfer process discussed here. 

The physical mechanism for the large axial heat flux achievable in the thermal 
pumping process considered here is an interchange of heat between the core of the 
flow and the walls and boundary layers. In  effect, the process acts very much as an 
accelerated molecular conduction process in which the tidal displacement Ax replaces 
the phonon mean free path A. Since the macroscopic distance Ax is orders of 
magnitude larger than A, it  has the effect of increasing the effective conduction heat 
transfer in the axial directions by factors of lo4 and higher. Applications for this heat- 
transfer process are numerous, ranging from devices in which heat is is removed from 
the core of a nuclear reactor without an accompanying mass transfer to an accelerated 
cooling device for removing heat in combustion processes. It should be pointed out 
that the process works best for fluids with large pc  and hence would not be as effective 
for transport of heat in gases. 

Remaining work for a further understanding of the heat-transfer process discussed 
here would be a complete integration of the heat-conduction equations (4) and (5) 
without use of the Chatwin approximation (6 )  and consideration of the nonlinear 
friction heating term in (4) not dealt with here. It is expected that such a calculation 
would yield details of the time-dependent heat-transfer process during each phase 
of an oscillation cycle, but would not be expected to yield results very different from 
the present when averaged over time and if Pr and Axw are kept small. Finally, i t  is 
suggested that further experiments be conducted on the process considered here as 
a supplement to those reported earlier (Kurzweg & Zhao 1984). The role of turbulence 
in such oscillating flows at high w and Ax should receive special attention as well 
as the recognition that inertia forces can become large at higher frequencies of 
oscillation. 
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